Direct and Recursive Prediction of Time Series Using Mutual Information Selection
نویسندگان
چکیده
This paper presents a comparison between direct and recursive prediction strategies. In order to perform the input selection, an approach based on mutual information is used. The mutual information is computed between all the possible input sets and the outputs. Least Squares Support Vector Machines are used as non-linear models to avoid local minima problems. Results are illustrated on the Poland electricity load benchmark and they show the superiority of the direct prediction strategy.
منابع مشابه
A methodology for training set instance selection using mutual information in time series prediction
Training set instance selection is an important preprocessing step in many machine learning problems, including time series prediction, and has to be considered in practice in order to increase the quality of the predictions and possibly reduce training time. Recently, the usage of mutual information (MI) has been proposed in regression tasks, mostly for feature selection and for identifying th...
متن کاملChaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملMutual Information Based Input Variable Selection Algorithm and Wavelet Neural Network for Time Series Prediction
In this paper we have presented an IntegratedWavelet Neural Network (WNN) model and Mutual Information (MI)-based input selection algorithm for time series prediction. Based on MI the proper input variables, which describe the time series’ dynamics properly, will be selected. The WNN Prediction model uses selected variables and predicts the future. This model utilized for time series prediction...
متن کاملMethodology for long-term prediction of time series
In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or ...
متن کاملRiver Discharge Time Series Prediction by Chaos Theory
The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005